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COMMENT 

Pseudo-first-order phase transitions in one dimension 

T Sasada 
Sagami Institute of Technology, Fujisawa 251, Japan 

Received 16 March 1979 

Abstract. A study is made of the one-dimensional Ginzburg-Landau system with a cubic 
term, a model of the first-order phase transition. Fluctuations are taken into account by 
means of the WKB method. It is pointed out that the transition is of continuous type for any 
value of the coefficient of the cubic term. This results from the excitation of domain walls 
between two coexisting phases. 

The simple Landau theory (Landau 1965) predicts a first-order transition whenever a 
cubic term is allowed in the expansion of the free energy with respect to the order 
parameter. Alexander and Amit (1975) criticised this theory and concluded that the 
above prediction is not always valid, but that the transition can be of continuous type for 
a certain range of the parameter involved. 

In this Comment we treat a one-dimensional system with a cubic term, in which the 
effect of fluctuations is expected to be especially important, and study what kind of 
transition this system shows. A one-dimensional system is simple, so that many of its 
properties can be obtained in explicit form. This may give a better understanding of a 
general theory of the first-order phase transition. 

Let us consider a generalised Ginzburg-Landau system whose free energy 
functional is given by 

(1) 

where the parameter u2 is an increasing function of the temperature and u3 and u4 are 
assumed to be positive constants. We take 4 ( x )  to be a real field satisfying periodic 
boundary conditions 4(L)  = 4(0), where L is the length of the system. 

The partition function for this system is obtained by calculating a functional integral 
of exp[-H(q5(x))/kBT] over all field configurations. For a one-dimensional field, the 
transfer operator technique (Scalapino er a1 1972) reduces the calculation of this 
integral to the problem of solving the Schrodinger equation 

C-$(d2/d4*) + V ( ~ ) I * A ( ~ ) = E A * A ( ~ ) ,  (2) 

V(4) = duz42 - u343 + U4d4. 
where 

(3) 
In the thermodynamic limit the free energy per unit length is given, by using the lowest 
eigenvalue Eo of equation (2), as 

F/L = So + Eo, (4) 
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where So is a constant independent of the temperature originating from a certain 
integral. 

Before proceeding further, let us refer to the results by the usual mean-field theory. 
In this theory, the system we consider shows a first-order transition when 

(5) 

is satisfied. For u2 just above uzC, the system is disordered with 4 = 0, while for u2  just 
below uzc, the system is ordered with 4 = iu3/u4. Through this transition the entropy of 
the  system undergoes a finite jump. 

The correct theory will be obtained by solving the Schrodinger equation (2). We 
solve this equation by means of the WKB method. In the vicinity of the transition point, 
i.e. u2 = uzO the potential V ( 4 )  has two minima. Confining ourselves to the low-lying 
eigenvalues near the potential minima, we divide the axis into five regions: (I) 4 < CY ; 
(11) a < 4  <@; (111) p < 4 < y ;  (IV) y < 4  < S ;  (V) S<4. Here CY, @, y and S are the 
turning points at which the classical momentum 

1 2  
U 2  = 5uJu4 = U Z c  

P(4)  = P(E - v(4))11/2 (6 )  
vanishes. Regions (11) and (IV) form two potential wells separated from each other by 
the barrier in region (111). 

Next we take in region (I) the exponentially growing WKB wavefunction which 
vanishes for 4 + -00 and, applying the connecting formula at the turning points, obtain 
the wavefunctions in the other regions successively. From the requirement that the 
wavefunction in region (V) should vanish for 4 + 00, we finally obtain the quantisation 
condition 

I t  is difficult to determine the energy levels from this complicated condition as it stands. 
However, observing that the transparency through the potential barrier is very small, 
we can approximate (7) by a simpler form 

We solve this equation by expanding the potential involved in p in a power series of 4 
about each of the minima and retaining it up to second order. The low-lying eigen- 
values are found as 

1 / 2  1 U 2  
1 /2  

E,='(%) 4 2 U 4  ( ~ ~ - - u ~ ~ ) + ( n + i ) & *  ( ~ ~ + - - ( u ~ - u ~ ~ ) ~ )  32 u4 , 

where 

(9) 

In evaluating the tunnel integral, we have retained only the lowest order in u4 /u2dZ  
because of the small transparency through the potential barrier which is assumed. 
Clearly this assumption is consistent with confining ourselves to the low-lying states. 
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Substituting (9) into (4), we obtain the free energy near the transition point as 

If we fix u3 and u4 as certain constants and vary u2, which measures the temperature, 
then we can observe the thermodynamic behaviour of the system. If the tunnelling term 
to were missing, a first-order transition would take place at u2=uzC.  This is the 
mean-field result. However, the presence of to, i.e. the tunnelling between the two 
nearly degenerate minima, prevents a clear-cut first-order transition, so that the 
transition is of continuous type. This fact holds for any value of 243. Following the work 
of Krumhansl and Schrieffer (1975) on the one-dimensional d4 model, we note that the 
tunnelling between the two minima is caused by domain walls, i.e. boundaries between 
coexisting disordered and ordered phases. Our argument thus provides an intuitive 
picture of the pseudo-first-order transition; that is, the formation of domain walls near 
the transition. This picture has been overlooked in mean-field theory. Also in higher 
dimensions, the concept of domain walls plays a crucial role in a better understanding of 
the first-order transition (Toulouse and KlCman 1976). 

The author is grateful to 0 Akimoto for valuable discussions. 
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